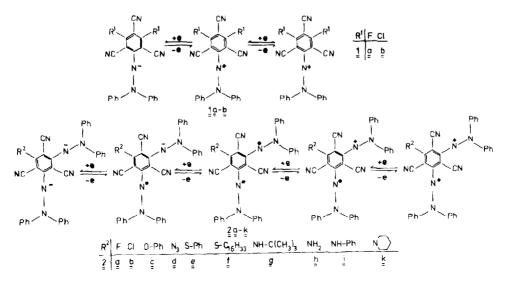

ELECTROCHEMICAL OXIDATION AND REDUCTION OF DIFFERENT SUB-STITUTED MONO- AND BISHYDRAZYLS OF THE CYANOBENZENE SERIES

J.Rieser, G.Abou-Elenien, K.Wallenfels, H.Baumgärtel Chemisches Laboratorium und Institut für Physikalische Chemie der Universität, Albertstr. 21, D-78 Freiburg (Germany) (Received in UK 21 May 1976; accepted for publication 27 May 1976)

The electrochemical behaviour of N.N-diphenyl-N-picrylhydrazyl (DPPH) is wellknown  $^{(1)}$ . In this paper we describe the cathodic reduction and anodic oxidation of mono- and bishydrazyls of the N,N-diphenyl-N-(2,4,6-tricyanophenyl)hydrazyltype. Recent reports have dealt with preparation of the hydrazyls <u>lb</u>, <u>2a</u>, <u>2b</u> and  $2d-k^{2-4}$ . The nucleophilic substitution of one fluorine atom in 1,3,5-tricyano-2,4,6-trifluorobenzene by N,N-diphenylhydrazine in benzene at 15°C leads to the formation of 3,5-difluoro-2,4,6-tricyanophenyl(N;N-diphenylhydrazine) (m.p.  $153-155^{\circ}$ C) and the substitution of the chlorine atom in 5-chloro-2,4,6tricyano-1,3-phenylenebis(N,N-diphenylhydrazine) by sodium phenoxide in ethanol at 78°C under nitrogen gives 5-phenoxy-2,4,6-tricyano-1,3-phenylenebis(N;N-diphenylhydrazine) (m.p. 205-207<sup>O</sup>C). 1a and 2c were obtained in nearly quantitative yields by treatment of these two hydrazine derivatives with lead dioxide  $^{2-4)}$ . The electrochemical measurements were carried out in dry benzonitrile with tetra-n-butylammonium perchlorate as supporting electrolyte, using a platinum rotating disc electrode, a platinum wire counter electrode and Ag/AgCl (benzonitrile,  $N(CH_3)_ACl$  sat.) as reference electrode. The redox potential of cobaltocinium/cobaltocene against this reference electrode was -743 mV  $^{5)}.$ The concentration of depolarizer was  $10^{-3}$  mol/1.

Fig. 1 and 2 show typical current-potential curves for the voltammetric oxi- dation and reduction of monohydrazyl <u>la</u> and bishydrazyl <u>2a</u>.

2363




The polarographic curves of the monohydrazyls  $\underline{1}\underline{a}$ ,  $\underline{1}\underline{b}$  and DPPH in benzonitrile show a single reversible one-electron anodic wave and a single reversible oneelectron cathodic wave of equal height. Plots of potential vs. log  $[i/(i_d - i)]$ according to Tomeš<sup>6</sup> are linear. S-values between 53-61 mV for both waves are obtained.

The D.C.-voltammograms of the bishydrazyls  $2\underline{a}-\underline{k}$  give four waves of equal height, which are clearly separate from each other. This is in contrast to the behaviour of Schlenk's Diradical  $\underline{3}$ , where two one-electron waves overlap both in oxidation and reduction  $7^{1}$ .

The oxidation of the bishydrazyls occurs in two reversible one-electron waves. The first reduction wave is reversible, the second one pseudo-reversible  $^{8\rangle}$ , each corresponding to one-electron addition.

According to the following schemes the hydrazyls  $\frac{1}{2}$  and  $\frac{2}{2}$  are oxidized and reduced in one-electron steps.



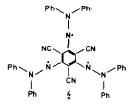
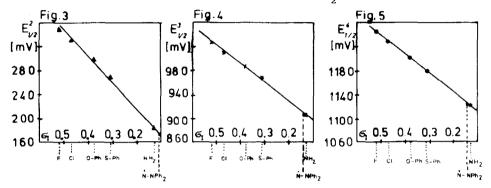

| comp.             | $E_{1/2}^{1 a} S^{1 b}$                |                                       |                   | $E_{1/2}^{2}$ a) $s^{2}$ b)       |                                 |                   | ΔE <sup>(2-1)</sup><br>1/2 |                |                               | log K <sup>C)</sup> |
|-------------------|----------------------------------------|---------------------------------------|-------------------|-----------------------------------|---------------------------------|-------------------|----------------------------|----------------|-------------------------------|---------------------|
|                   | [mV]                                   |                                       |                   | [mV]                              |                                 |                   | [mV]                       |                |                               |                     |
| <u>la</u>         | 53                                     | 0 58                                  |                   | 120                               | 0 55                            |                   | 6                          | 70             |                               | 11.4                |
| <u>2a</u>         | 48                                     | 9 57                                  |                   | 118                               | 0 55                            |                   | 6                          | 91             |                               | 11.7                |
| DPPH              | 397 61                                 |                                       | 972 53            |                                   |                                 | 575               |                            |                | 9.7                           |                     |
| Table             | 2 Ele                                  | ctroche                               | mical             | data of                           | bishydr                         | azyls             |                            |                | ····                          |                     |
| comp.<br><u>2</u> | E <sup>1 a</sup> )<br>E <sup>1/2</sup> | E <sup>2 a)</sup><br>E <sup>1/2</sup> | s <sup>2 b)</sup> | △E <sup>(2-1)</sup><br>1/2<br>[m] | E <sup>3 a)</sup><br>[1/2<br>[] | s <sup>3 b)</sup> | E <sup>4</sup> a)<br>1/2   | s <sup>4</sup> | b) <sub>AE</sub> (4-3)<br>1/2 | log K C)            |
| a                 | -225                                   | 350                                   | 59                | 575                               | 1028                            | 55                | 1248                       | 58             | 220                           | 11.4                |
| þ                 | -260                                   | 330                                   | 66                | 590                               | 1010                            | 55                | 1230                       | 57             | 220                           | 11.5                |
| ≌                 | -279                                   | 300                                   | 65                | 579                               | 988                             | 54                | 1202                       | 52             | 214                           | 11.7                |
| ₫                 | -292                                   | 289                                   | 60                | 581                               | 976                             | 53                | 1180                       | 64             | 204                           | 11.5                |
| ē                 | -330                                   | 270                                   | 66                | 600                               | 968                             | 57                | 1179                       | 59             | 211                           | 11.7                |
| £                 | -381                                   | 258                                   | 59                | 639                               | 968                             | 53                | 1179                       | 63             | 211                           | 12.1                |
| ਬ                 | -406                                   | 205                                   | 66                | 611                               | 912                             | 60                | 1146                       | 62             | 234                           | 11.9                |
| ₽                 | -427                                   | 184                                   | 66                | 611                               | 905                             | 54                | 1122                       | 56             | 217                           | 12.1                |
| i                 | -431                                   | 179                                   | 60                | 610                               | 896                             | 54                | 1111                       | 60             | 215                           | 12.1                |
| <u>k</u>          | -478                                   | 158                                   | 60                | 636                               | 890                             | 55                | 1100                       | 59             | 210                           | 12.4                |

Table 1 Electrochemical data of monohydrazyls

a) Half-wave potentials vs. Ag/AgCl (benzonitrile, N(CH<sub>3</sub>)<sub>4</sub>Cl sat.) b) Slopes of the logarithmic analyses curves,  $S = dE/dlog(i/i_d-i)^{-6}$ c) Semiquinone stability constant <sup>9</sup>.


The results of measurements show that the electrochemical oxidation and reduction of the hydrazyls  $\underline{1}$  and  $\underline{2}$  are strongly influenced by the substituents of the tricyanobenzene ring. Hydrazyls with electron-withdrawing groups are difficult to oxidize and easy to reduce. This becomes clear with the bishydrazyls  $\underline{2}\underline{a}-\underline{k}$  which differ only on the substituents  $\mathbb{R}^2$ . A successive shift of half-wave potentials is obtained going from hydrazyl  $\underline{2}\underline{a}$  with fluorine to hydrazyl  $\underline{2}\underline{k}$  with a piperidine substituent.

The comparison of the half-wave potentials of the first oxidation and reduction waves in the series  $\underline{1a} \rightarrow \underline{2a} \rightarrow \underline{4}$ , where stepwise replacements of fluorine substituents by N,N-diphenyl hydrazyl groups  $-\dot{N}-NPh_2$  take place, indicate that the oxidation of  $\underline{2a}$  becomes easier with 172 mV, that of  $\underline{4}$  easier with



291 mV than that of  $\underline{la}$ ; the reduction is more difficult with 180 and 355 mV respectively.

Fig. 3-5 show that a linear relationship exists between the half-wave potentials (table 2) and the inductive effect of the substituents  $R^2$ , represented by the  $\sigma_1$ , values <sup>10)</sup>. By applying the corresponding values of the trishydrazyl <u>4</u> (the electrochemical behaviour of which will soon be published) on the curves the  $\sigma_1$ , value of a N,N-diphenylhydrazyl group was found to be between 0.11 and 0.14. The inductive effect is therefore similar to that of a NH<sub>2</sub>-substituent.



## References

- 1) <u>E.Solon</u> and <u>A.Bard</u>, J.Amer.Chem.Soc. <u>86</u>, 1926 (1964) <u>C.IwaKura</u> and <u>H.Tamura</u>, Denki Kagaku <u>42</u>, 126 (1974); C.A. <u>81</u>, 98593r, (1974) <u>B.L.Funt</u> and <u>D.G.Gray</u>, Can.J.Chem. <u>46</u>, 1337 (1968) <u>D.A.Hall</u> and <u>P.J.Elving</u>, Electrochim.Acta <u>12</u>, 1363 (1967)
- 2) J.Bretschneider and K.Wallenfels, Tetrahedron 24, 1603 (1968)
- 3) J.Rieser, G.Kothe and K.Wallenfels, Liebigs Ann.Chem. <u>1975</u>, 1398
- 4) J.Rieser and K.Wallenfels, Liebigs Ann.Chem. in press
- 5) W.Sümmermann, Dissertation, Freiburg 1969
- 6) J.Tomes, Coll.Czech.Chem.Commun 2, 12 (1937)
- 7) <u>G.Kothe</u>, <u>W.Sümmermann</u>, <u>H.Baumgärtel</u> and <u>H.Zimmermann</u>, Tetrahedron Lett. <u>1969</u>, 2185; Tetrahedron <u>28</u>, 5957 (1972)
- 8) H.Matsuda and Y.Ayabe, Z.Electrochem. 63, 1164 (1959)
- 9) <u>R.Brdička</u>, Z.Electrochem. <u>47</u>, 314 (1941)
- 10) P.R.Wells, Chem.Rev. 63, 171 (1963)

The authors thank the Deutsche Forschungsgemeinschaft for financial support.